Rapid induction and translocation of Egr-1 in response to mechanical strain in vascular smooth muscle cells.
نویسندگان
چکیده
The effect of mechanical strain on transcription and expression of the immediate-early genes, early growth response gene-1 (Egr-1), c-jun, and c-fos, was investigated in neonatal rat aortic vascular smooth muscle (VSM) cells. Cells grown on silicone elastomer plates were subjected to cyclic mechanical strain (1 Hz) at various durations and magnitudes. Egr-1 mRNA increased rapidly in response to cyclic strain, reached a maximum of 10-fold after 30 minutes, and returned to baseline after 4 hours. c-jun exhibited a similar pattern, whereas c-fos mRNA expression was unaffected by strain. Cycloheximide prolonged the increase in Egr-1 and c-jun mRNA and caused superinduction of both. The threshold level of continuous cyclic strain needed to induce expression was 5% for Egr-1 and c-jun. Even a single cycle of mechanical strain that lasted 1 second was sufficient to induce Egr-1 and c-jun mRNA. Strain also increased expression of a transiently transfected Egr-1 promoter-reporter construct. The effect of varying extracellular matrices on strain-induced Egr-1 and c-jun mRNA was examined. In contrast to collagen type 1- and pronectin-coated plates, strain did not significantly alter expression of Egr-1 and c-jun was less induced on laminin-coated plates. On collagen type 1, strain increased Egr-1 protein levels by 2.1-fold at 60 minutes. Immunofluorescence microscopy revealed translocation of Egr-1 to the nucleus in response to strain. These observations indicate that Egr-1 expression and translocation are sensitive to mechanical perturbation of the cell. c-jun is also induced by strain, but c-fos is not. The signal for this induction may involve specific cell-matrix interactions.
منابع مشابه
Strain-responsive regions in the platelet-derived growth factor-A gene promoter.
Proliferation of cultured neonatal vascular smooth muscle (VSM) cells is enhanced by exposure to cyclic mechanical strain, in part through autocrine action of secreted platelet-derived growth factor (PDGF). We examined transcription factors and DNA response elements that may participate in the induction of PDGF-A gene transcription by mechanical strain. PDGF-A mRNA increased gradually over 4 to...
متن کاملMechano-sensitive transcriptional factor Egr-1 regulates insulin-like growth factor-1 receptor expression and contributes to neointima formation in vein grafts.
OBJECTIVE Vein grafts in a coronary bypass or a hemodialysis access often develop obliterative growth of the neointima. We previously reported that the mechanical stretch-activated insulin-like growth factor-1 receptor (IGF-1/IGF-1R) pathway plays an important role in this remodeling. However, the transcriptional mechanism(s) regulating IGF-1R expression and neointima formation have not been id...
متن کاملHemin upregulates Egr-1 expression in vascular smooth muscle cells via reactive oxygen species ERK-1/2-Elk-1 and NF-kappaB.
Reactive oxygen species (ROS) and oxidant stress are important mediators of cardiovascular pathologies including atherosclerosis. One source of ROS in the vasculature is free heme released from hemoglobin. Because Egr-1, the regulator of cell proliferation and apoptosis, is also induced by oxidant stress and is likewise implicated in atherosclerosis, we examined the regulation of Egr-1 by heme ...
متن کاملTranscriptional activation of the zinc finger transcription factor BTEB2 gene by Egr-1 through mitogen-activated protein kinase pathways in vascular smooth muscle cells.
We have recently demonstrated that a developmentally regulated zinc finger protein, basic transcription regulatory element binding protein 2 (BTEB2), is induced in neointimal smooth muscle in response to vascular injury. In this study, we investigated the molecular mechanisms regulating BTEB2 expression in vascular smooth muscle cells (SMCs) in vitro. BTEB2 mRNA expression is rapidly and persis...
متن کاملThe role of autophagy in advanced glycation end product-induced proliferation and migration in rat vascular smooth muscle cells
Objective(s): To investigate the role of autophagy in advanced glycation end products (AGEs)-induced proliferation and migration in rat vascular smooth muscle cells (VSMCs).Materials and Methods: After culture, VSMCs were treated with 0, 1, 10, and 100 μg/ml concentrations of AGEs. Autophagy specific protein light chain 3 (LC3)-I/II was determined by western blotting, autophagosomes were observ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 84 6 شماره
صفحات -
تاریخ انتشار 1999